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The proposal of Dusois & Gmrmm (1982) to create a new systematic
category (klepton) and taxa (sensu
lineages, genealogles) is analyzed Such taxa can be considered neither as
simple hybrids nor as good s

Biological trends for all Immvn klzptonl in the Ambystoma, Rana,
Phoxinus, Poecilia and P and their new
associated terms discussed.

Kleptons are historical entities, but not of the classical Biological Species
Conrgpl (BCS sensu MavR, 1982), but showing equally ecological, genetical,

as their “good ” species.

me an epistemological point of view, the fact that so-called kleptons
are not subject to cladistic laws (because kleptons are polyphyletic), must not
be considered as and argument for ignoring the existence of those taxa, either
biologically or taxonomically.

Klepton evolutionary rules, as parallel species pathways, are discussed:
we conclude that not all evoluiionary processes take place in the species

next.

context.
The Biological Klepton Concept (BKC) is proposed: a klepton is a
community of populations with a hybrid genome derived from the same
upon species that play

parental species,
the réle of sexual host.

“* But what about viruses ? Can they be classified i Linnean fashion ? (...) The only
allnbule of life possessed by v1ruses 1s reproduction w1th genetic continuity and the
of can th oceur. ”” (GOODHEART, 1969. 38).

* This paper was presented durmng the - treatment of hybod-derived
vertebrate aka  organised by Andrew H_Prict as part of the Combned Macung. of the Soaicty for the
Study of Amphibians and Repbles, the Herpetologists ™ League. Early Life History Section, AFS, the
American Elasmobranch Society. with the Amencan Society of lhthyologists and Herpetologsts (Anm
Arbor, Michigan, US A, 23-29 June 1988).
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NATURAL TAXA MUST BE NAMED

l suppose all evoluuonary biologists agree with this statement, in spite of rare

istics or atypical reproductive modes in taxa of certain lineages The

examp]c of viruses is very clear: we don’t know if 1t can be said that viruses are alive (they

have no intrinsic metabolism), but viruses do have names becauses they constitute

historical entities (acting as genetical cell parasites of animals and plants), and names are
needed to facilitate studies on them.

Parthenogenetic, gynogenetic, and hybridogenetic populations constitute special taxa
m the Animal Kingdom. Briefly 1t can be said that parthenogenetic unisexual females
reproduce without sperm, whereas gynogenetic umsexual females need sperm of associated
spemcs for reproducing, the genome of which is not included into the egg after
ion; finally, hybnd taxa need either the sperm or the ovocytes of
associated species for reproducing, the genome of which 1s incorporated into the egg. The
analogy with respect to viruses is clear: as viruses are genetic parasites of cells (the
biological unit, MAYR, 1982), thus gynogens and hybnidogens are genetic parasites of
“ good ™ species (the unit of evolution, MAYR, 1982).

fert

of par and hybridogenetic taxa is a system-
atic topic currently of major interest, due to biol d in those 1
which put in question the classical concept of species. Discussions at the Ann Arbor
meeting made evident that:

[8)] Pdrlhenogencuc population must be named and considered separately from
g 1c and hybnid

{2) Parth lati are 11 constituting taxa with
clonal genetic inheritance, and frequently with hybrid onigin as their primary speciation
event (see discussions in CUELLAR, 1987). Parthenogenctic reproduction 1s asexual {sensu
MayNARD SmiTH, 1986) and automitic (sensu MoGig, 1986).

(3) Gy 1c and hybrid lati do not constitute genetically
autonomous taxa They reproduce sexually, thh well-established mechamisms of mating
choice (see for instance BLANKENHORN, 1977; KEEGAN-ROGLRS & SCHULTZ, 1988)

4 G and hybrid i ions cannot be included in the Biological
Species Concept (BSC, sensu MAYR, I942 I982)

It 1s my wish to consider in this pdper only urat for g;
and hybrd, ic taxa. Biol istics concerning reproductive modes,
gametogenetic mechanisms, hybrd genome composition, ploidy, and sexual parasitism,
for different gynogenetic and hybridogenetic taxa are reviewed and summarized as they
occur in fishes and amphibians.

Major controversies concerning ural treatment of g; ic and hybrido-
genetic taxa have orniginated from ambiguous discussions on their conformance (or not)
with the unitary concept of species. 1 here show that the biological characteristics of those
taxa are quite unitary, but far different from those of the BSC. Accordingly, I propose
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heremn a Biological Klepton Concept (alternative to BSC). Kleptons are regarded as
distinct, natural, and real biological entities, extrapolating from the term and systematic
category created by Dusois & GUNTHER (1982).

THE DEFINITION OF KLEPTON
GIVEN BY DuBois & GUNTHER (1982)

The aim of these two authors was . .to provide a general name and nomenclatural
rules for some particular animal °forms’ wh\ch cannm be properly considered as
‘hiologlcal * species, such as g ic and hybrid fish of the genus
| fish of the genus Poecilia, gynogenetic unisexual
salamauders of the genus Ambystoma, and hybridogenetic (or leaky hybridogenetic) frogs
of the genus Rana. All these forms, despite their diversity, have the following features in
common: they are of hybrid origin; their heredity is clonal or hemiclonal; for their
reproduction such forms depend on the gametes of a distinct * good * species. ” (DuBoIs &
GUNTHER, 1982: 290).

From a practical poml of view, creauon of the new term klepton provides simplicity,

ready of ion and a for naming further, still
unknown categories of taxa.

From an evolutionary point of view, the term klepton excludes the Biological Species
Concept, and connotes a new one, the Biological Klepton Concept.

From a genetical, ecological, and ethological point of view, the term klepton imphes
the hybrid genetic character of its taxa, as well as their reproductive modes that involve a
genetical parasitism of hybrids on their ** good ™ associated parental species. Special mate
choice ethograms and ecological niches are involved in the klepton concept.
All of these biological characteristics are entailed in use of the term klepton, which
urally can just be introd asan i between the binomial terms, i.e.:
Rana Kl. esculenta, Poecilia kl. formosa.

KLEPTONS ARE NOT SPECIES

“ Species are groups of actually or potentially interbreeding natural populations
which are reproductively isolated from other groups.” (MAYR, 1942: 120).

“ An evolutionary species is a lineage (an ancestral-descendant sequence of popula-
tions) evolving separately from others and with 1ts own umitary evolutionary role and
tendencies. >’ (SivpsoN, 1961: 153)

“ A species is a reprod ity of ively 1solated from
others) that occupies a specific niche in nature. ” (MAYR 1982 273).

To my knowledge, Ernst MAYR never considered specifically in his works the cases of
id and lati In fact findings concerming these taxa are
very recent and their biological interest remains still ignored in general zoological books.

hy
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However, the father of the BSC clearly parth ic taxa from of
the umitary species: ** The biological species concept is based on the reproductive isolation
of populations. The concept, therefore, cannot be applied in groups of animals and plants

that have abandoned bisexual reproduction.” (Mavr, 1982. 283).
In contrast to MAYR, several authors (as FROST & WRIGHT, 1988) have proposed
luti for naming parth taxa, considering them as species, from cladistic

points of view: “ ... a lineage concept, later redefined by WiLEy (1978) as the largest
monophyletic group whose components are not irretrievably on different phylogenetic
trajectories . Reading WILEY (1978), however, one concludes that FrosT & WRIGHT
(1988) merely present an interp of WILEY’s luti: 'y concept of species
(modified from SiMPSON, 1961), not of anatomically unisexual taxa.

The ic protocol for hybrid and thus remains
indeterminate. Those taxa are neither asexual as parthenogens, nor reproductively isolated
bisexual populations as species. Nevertheless, it is true that some gynogenetic populations
reproduce clonally, in analogy to partt But it it cannot
reproduce alone and reproductive isolation 1s the major biological requirement of
autonomous population taxa The point of major importance 1n classification is the mode
of reproduction (that is, genetic parasitism common to hybridogens and gynogens), not
the mode of conservation of the genotypes (clonal as in gynogens and parthenogens,
hemiclonal or clonal in hybridogens)

BIOLOGICAL CHARACTERISTICS IN KLEPTONS

Kleptons are real entities.

Biological trends 1n al! known gynogenetic and hybridogenetic vertebrate hybrid taxa
are summarized 1n Table I, showing clear analogies between various fish and amphibian
complexes. Some very interesting findings concerning “ before meosis ”, ** pre-meiotic ™',
and ** amelotic ” cytogenetic events, for different complexes, are of major cytological and
evolutionary mnterest These ph could be mnterpreted as convergent solutions to
hybridity (from a darwinistic point of view), or as a result of neutral mutations in
ancestors, before hybridization, well utilized after casual hybridization by gynogens and
hybridogens for their reproduction (random walk evolution of the parental species
genome, sensu KING & JUkrs, 1969, followed by natural selection on hybrids, sensu
DoBzHANSKY, 1937).

It is worth noticing that constant presence of some parental genomes have been found
in all complexes (the genome ** laterale ™ in Ambystoma kleptons, as well as the presence of
the genome “ridibunda ™' 1n all Rana kleptons, or the presence of the genome ** monacha
m all Poeciliopsis kleptons).

In all cases, the presence of a sexual host associated with each klepton is a clear and
distinct fact for all these hybrid taxa.

However, no gynogenetic or hybridogenetic taxa have yet been found 1n reptiles,
where are least 30 parthenogenetic lizard taxa exist (CUELLAR 1987).
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Another meaningful reason for considering a common nomenclatural treatment for
gynogens and hybridogens is that the Poeciliopsis complex includes both hybridogenetic
and gynogenetic taxa (see Table ). Likewise it appears (as inferred from the results of
BoGART et al., 1987) that gynogenetic and hybridogenetic reproductive modes occur n the
very same hybnd indi , in some popul of 3

A NEW, MORE GENERALIZED DEFINITION OF KLEPTON :
THE BloLogicaL Kiepton CoNcepT (BKC)

The definition of klepton given by Dusois & GUNTHER (1982) was based on three
conditions that do not always take place in all hybridogenetic and gynogenetic hybrid
taxa. For instance recombinant gametes occur in low frequencies in some rare Rana kl.

I hybnd, i as well as diploid gametes containing both parental
genomes (GRAF & PoLLs PeLAz, 1989). In these cases the original definition of klepton
would not apply.

Thus I propose a more extensive Biological Klepton Concept: “ A kiepton is a
community of populanons with a hybrid genome derived from the same parental species,

T dent upon ic species that play the role of sexual host . An
equivalent definition would be: “ A kiepton is an evolunonary systemanc category
(parallel to the specles pathway) ding hybrid popul producing by hybridogen-

esis and gynogenesis

1 nevertheless agree completely with MAYR (1982) in considering the species as the
unit of evolution, as well as the cell is the functional biological unit of life. The analogy of
viruses and kleptons, stated previously, reminds how carefully the evolutionary relevance
of both groups must be considered, especially of retroviruses and allopolyploid kleptons.

NAMED, AND STILL UNNAMED KLEPTONS

“1 don’t like to see descriptions of the Evolution as the mean of survival and
multiplication of DNA. (...) It would be as absurd as to propose explanations of Eastern
literature as the means of survival of the points on the letter i.” (transtated from
MARGALEF, 1980. 93).

Kleptons could be named in the same way as viruses, using combined numbers or
letters referring to their prevailing genomes (transmitted clonally, hemiclonally, or
recombined). But kleptons are animals, they are clearly alive, and they have phenotypes
analogous to those of the “ good ” species described by LINNAEUS

In fact one of the reasons prompting DUBOIS & GUNTHER (1982) to propose the new
term klepton was the fact that binomials at the Linnacan fashion already exist for many of
those taxa. That is, some kleptons were named as species, and their morphological
description and names were available before the discovery of their hybrid character and

Source  MNHN, Parrs



08

Table I.  Biol, | trends for some jc and hybrid genetic taxa. Major papers and reviews concerning each topic are referred to by
numbers:

(1) SCHULTZ (1969) ; (2) FERRIS (1984} . (3) VRUENHOEK (1984) ; (4) CrMino (1972a) , (5) Cisuno (1972b) ; (6) ScHuLTz (1977) ; (7) MooRe (1984) , (8) Husss
& Husns (1932) , (9) RascH et al. (1982) , (10) Monaco et al (1984) , (11) DAWLEY et al. (1987) , (12) DAWLEY & GODDARD (1988) ; (13} GoDDARD et al (1989) ,
(14) BERGER (1977}, (15) GRAF & MULLER (1979) , (16) HEPPICH et al (1982) , (17) PoLLs PELAZ (1991) , (18) TUNNER (1974) , (19) GRAF & PoLts Prcaz (1989)
(20) GraF et al. (1977), (21) Uzzetr & Hotz (1979) 1 (22) UzzewL (1964) , (23) MasLin (1968) , (24) Lowcock et al (1987), (25) Kraus (1985), (26) BOGART et
al (1989}, (27) UzzeiL & GOLDBLATT (1967), (28) SERvAGE (1979), (29) UzzeLL (1970), (30} MacGREGOR & UzzeiL (1964) , (31) CueLLar (1976), (32)
Downs (1978) , (33) UzzeLL & GOLDBLATT (1967) , (34) LyNcH (1984) , (35) UzzEiL (1969) , (36) MORRIS & BRANDON (1984) , (37) BOGART et al (1985), (38)
BoGART & LicHT (1986); (39) Morris (1985)

Kleptic nomenclature Parental genome Gametogenesis Reproduction mode Sexual host
>
Fishes: Poectliopsis complex 2
Precedent nomenclature” hyphenaled names, ﬁ
Pocctliopsis ki monachalucida Schultz, 1969, 2n Premeotic Hybndogenesss;, P lucuday m
mon, lucy exclusion, @
In domitosis, s Gynogenesis, | ; P lucida, P. monacha, s o«
Poectiopsis K. monachaoccudentalis Schultz,1971,  2n mon, occid ; Prem exclusion,,  Hybndogenciis,, P occidentalis, P
Poeciliopsis K| monachalandens Schultz, 1971, 2n mon . laud Prem. exclusion, Hybdogenesss, , P landens,, i
Unnamed Poeciliopsts Klepton n (mon-vir), luc,  Prem exclusion®  Hybudogenesss,,, P lucidag, =
Unnamed Poectliopsis Klepton 3 mon, wir, luc, Endomtosss ? Gynogenesis, ; P winiosa,
Fishes: Poeciha complex
Poecilia K. formosa (Girasd, 1859); n mex, Tatip, Apomixis, Gynogenesis,, s excanay
Fishes: Phoxinus complexes
Unnamed Phovinus Kepton 20 Gynogenesis, | P, eos
i n eos, neogacus s () Hybrdogenesis?,,; P eos, P. meogaeus
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Amphibuans: Rana complexes
Precedent nomenclature. formal names,

Rana K. esculenta Linnacus, 1758, 2 Before-metosis R. rudibunda
exclusion, R. lessonae 5
nd, less.,, + endomitosis,, Hybridogenesis,,
3n Idem, and R KL esculenta
ameiosis,
Unnamed Rana klepton 2 nd, pereziy, B-metoss excl ? Hybridogenesis. R perezt
Unoamed Rana klepton n nd, bergeny B-meiosis excl,? Hybridogenesis,, R bergert -
=]
Amphibians: Ambysioma complexes g
Precedent nomenclature: formal names.; ,, 2
and hyphenated names,, -
Ambysioma K| nothagenes Kraus, 1985 3nyedn, lat, 16X, tiglas 6] 6] A tigrmem? A. laterale %, g
Ambystoma K. planineum (Cope, 1867); M dnmdng  lat, jefl Endomitosisy, sy, Hybridogenesss,, A agrmum? A. texamm Ty B
Gynogenesis ysse A seffersontanum
Parthenogenesis ;0 A maculatum Ty
Unnamed Ambystoma Klepton M0yl 8L, teX 0] © A laterale? texanum?;,
Unnamed Ambystoma klepton 3y, Tat, jefl., tige 5 0 ]
Unnamed Ambystoma klepton 308045 lat,, Jeff., tex s ) )
=
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reproductive h hyb is or is). It was the case of Rana ki
esculenta Linnaeus, 1758, Ambystoma (Cope, 1867), and Poecilia kl. formosa (Girard,
1859). Current authors continue to use those ancient names, and DuBols & GUNTHER
(1982) proposed simply to introduce the abbreviation * kI. ™" in the binomial to distinguish
them from species.

Thus the major nomenclatural controversies that now occur concern kleptons that
still are unnamed.

Several papers have been published concerning these topics, and the dilemma 1nvolves
two major alternatives: the use of hyphenated names as proposed by ScHULTZ (1969}, and
the use of Dusols & GUNTHER's (1982) klepton nomenclature.

Hyphenated nomenclature consists in giving all parental names of genomes com-
posing the hybrid, each one being preceded by a number mdlcatmg the ploidy level of each
genome (for instance b laterale-(2)je inum). This is a genetic
systematic point of view.

I choose the klepton nomenclature because I consider that system as most practical
from an 1 'y, general biol 1 and ph pical points of view. The klepton
1 lets us treat each case with different binomual, just introducing the
particle “ k. ” between. But it also imphes that authors studying different hybridogenetic
and gynogenetic hybrid taxa must undertake careful description of all known kleptons.
Fully complete description is needed, including morphology. For instance in European
complexes of Rana there are two quite well genetically known kleptons yet unnamed. That
constitutes an additional difficulty for people concerned for their conservation, ecological
study and zoogeographical considerations.

In the absence of complete descriptions of kleptic taxa, provisional names could be
employed. For instance GRAF & PoLLs PELAZ (1989) utilize Rana kl. RP (Rana ridibunda-
perezi sensu SCHULTZ 1969) for referring to one still unnamed Southern Europe hybrid.
Either ScHULTZ's hyphenated names or other lettered or numbered nomenclatures could
be provisionally accepted until formal kleptic names are substituted, once complete
descriptions of those taxa are provided.

WHEN IS A NEW KLEPTON JUSTIFIED ?
THE PROBLEM OF POLYPLOIDS

Biological ch istics of b ki h Kraus, 1985, are noted in
Table I. 1 know that Canadian workers on the Ambystoma complex disagree with
consideration of this taxon as a separate species (BOGART & LICHT, 1986; LowcCocK et al.,
1987). They are correct. it 1s not a species but a klepton. Kleptic nomenclature and the
BKC concept should substitute for the BSC The case is a classic illustration of conditions
Jjustifying the erection of a new klepton.

As a klepton is the result of hybridization between two or more species, all new
discoveries of hybrids should be nomenclaturally recognized. Thus the discovery by
KRraus (1985) of triploid hybrids with parental genomes of Ambystoma laterale, A
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texanum, and A. tigrinum was a biological novelty (no other combination of those parental
genomes was known before in the Ambystoma complex) and the erection of a new name
was required and fully justified. A question arises, however, because Ambystama kI
nothagenes populations include both triploid and J and h

individuals, just as Rana kl. esculenta includes diploid, triplod, and diploid-triploid
populations.

1 propose that all different ploidy combinations with the same parental genomes be
included in the same klepton The main reason 1s that genetic flow exists between different
ploidy forms. For instance diploid Rana Kl. esculenta females in Germany produce both
diploid and triploid progeny, thus preventing consideration of diploids and triploids as
separate taxa. On the other hand, recent studies of BoGART & LicHT (1986) showed how
diplod, triploid, and tetraploid progenies were from the same Ambystoma triploid females
in Lake Erie. Obviously, separate nomenclature for different ploidy levels would be
biologically inacceptable. For these very same reasons I consider Ambysioma tremblayi
Comeau, 1943 (4mby 2 laterale-1 it sensu SCHULTZ, 1969) a ]umor

o KI. platineum (Cope, 1867) (Amby. 1 laterale-2 j
sensu SCHULTZ, 1969) (sce Table I).

KLEPTONS TOWARD THE STATUS OF SPECIES

Kleptons become species either when they become genetically autonomous, or when
their hybrid origin is led, by ions (sensu lato). The phenomena
could be compared to diploidization of tetraploid new species after entire genome
duplication (OHNoO, 1970).

As some peripheral subspecies are involved in speciation processes, thus some kieptic
pulations could be idered in iation process, too. Such appears to be the case for
some Rana Kl. esculenta populations of East Germany. In these populations esculenta
hybrids seem to be autonomous with respect to the species Rana ridibunda (see a review in
GRAF & PoLLs PELAZ, 1989). I understand these situations as speciation events (or perhaps
only attempts), and I propose to consider these cases as examples of “ good ™ species
arising from a kleptic origin (fig. 1).

Perhaps speciation events in Xenopu.s (by allopolyploidy, KoBEL & Du PASQUIER,
1986) are anal to current hybr in Rana k1. e (see Dugols,
1977). As a matter of fact, derivation of new species from hybrid origin really seems to be
related to the tetraploid level (MURAMOTO & OnNoO, 1968; OHNo, 1970; Comings, 1972;
BoGART, 1980; FisHER et al., 1980; ALLENDORF & THORGAARD, 1984). Autotetraploids
frequently show tetrads in aberrant meiosis, whereas all ids with an i
parental genome hybrid dosage could constitute a double number of bivalents, and
* ordinary " meiosis could happen; therefore mixis of diploid gametes could originate a
new gonochoric species of tetraploid hybrid origin. Triploids giving diploid gametes could
be an intermediate step between kleptons and species 1 the Rana K. esculenta complex.
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3

a
Fig 1 - Some evolutionary trees illustrating different genetical sytems in the Palearctic populations
of Rana kl esculenta complex: 1 (the so-called L-E system), 2 (the so-called R-E system); 3 (ali-
le

male in forest); and 4 (Serrahn pure esculenta
populations) Circles indicate genomes A refer to the
following genomes: R = R ridibunda, L = R. lessonae, RL, RLL = R. kl. esculenta. For more
explanations see the review of GraF & PoLLs PrLaz (1989)

INTROGRESSION, MOSAICISM,
AND CLONAL-HEMICLONAL DIVERSITY IN KLEPTONS

Kleptons seem to play an important role as a genetic vector of introgression both

between their associated * good ™ species, and between other involved klepton. For
instance high introgression levels of Poeciliopsis viriosa genes into the monacha hybrido-
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genesis-inducer genome have been found in Rio Moccorito’s Poecihopsis monacha-viriosa
hybnd lati In those p i monacha-viriosa haploid gametes
occur, b il of hybnd is when crossed with sympatric individuals of
Poecxlwpm lucida. Thus diploids of Paecxlxapm (momzcha viripsa)-lucida become separate,

hybrid: ic taxa in reprod d on the “ good ™ species P.
lucida (VRUENHOEK & ScHULTZ, 1974). This unnamed klepton seems to have evolved as a
separate unit, perhaps much closer to the species level than Rio Grande triploid kleptons
of trihybrid monacha-viriosa-lucida genome dosage. I conclude that high levels of
introgression should be reflected with the use of separate names. Low levels of
introgression (for instance 1n some populations of Rana kl. esculenta complex, see a review
in GrAF & PoLLs PeLAz, 1989) are irrelevant for consideration of separate taxa.

Mosaicism occurs tn Phoxinus kleptons (DAWLEY & GODDARD, 1988) as well as in
some “ good " species (SERRA, 1965), and findings of this kind must not be considered
problematic for using kleptic nomenclature for hybrids with hybridogenetic or gynogenetic
reproduction.

Hemiclonal and clonal diversities in Rana and Poeciliopsis kleptons have been
reviewed respectively by Hotz (1983) and VRUENHOEK (1984). This would constitute a
problem for nomenclatural systems based only on genome dosage (because each clone is a
* separate ”, self-evolving genome). But no problem 1s encountered in kleptic nomencla-
ture, which provides for different degrees of polymorphism between populations.

KLEPTONS AND EVOLUTION

*The species are the real units of evolution.” (MAYR, 1982: 621).

It could be that all genotypes 1n tetrapod vertebrate taxa have a common ancestor
(500 Myr ago) in which duplication at least once of the entire genome took place (OHNO,
1970). In some cases in entire families, as salmonids (ALLENDORF & THORGAARD, 1984)
and catostomids (FERRIS, 1984), as well as at least twelve more fish species. (ALLENDORF &
THORGAARD, 1984}, a trace of *“ recent ”” (1n 50 Myr) p: events
still remains Polyploid amphibians and reptiles are surpnsingly common (Dusois, 1977;
BoGaRT, 1980). In some cases, as in the entire genus Xenopus, evidence of allopolyploidy
remains (KOBEL & Du PAsQUIER, 1986). In other case, as for instance 1n the triploid-
tetraploid Carassius auratus complex, hybrid origins are likely, because the parental
species are allopatric, and divergent evolution of the taxa has taken place (LIEDER, 1955;
CHERFAS, 1966; Koavasi, 1971; KoBavast et al., 1970).

But it is clear that hybndization could be the basis of polyploidy (BoGarT &
‘WASSERMAN, 1972; Dugors, 1977), pcrhaps in the way proposed by ScHuLTz (1969), by (1)
the origin of a triploid strain (hybrid or or not), followed
by (2) occasional fertilization of the triploid by normal diploid to produce fertile
tetraploids.

Gametogenetic mechanisms are involved. CUELLAR (1987) reviewed all meiosis
variants for parth is (sensu lato, including hybrid and g in
plants and ammals, in discussing ** Spontaneous versus Hybndization controversy ™ In
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fact meiolic, p 1 and bef {osis ex igancies (Table 1) are at the origin of all

ic and hybrid. ic hybrid lati 1 Tude that at least some kleptons

could be considered as hybrid taxa currently evolving toward the status of polyploid

“ good ™ species. The process could be favored by heterosis (BULGER & ScuuLTZ, 1979;

MooRE 1976, 1984), and hemiclonal-clonal adaptation of hybrids to intermediate
environments (THIBAULT, 1978; THiBAULT & ScHULTZ, 1978).

PERSPECTIVE IN THE USE OF KLEPTIC TERMINOLOGY

The history of taxonomy is an evolutionary event, too, and 1t 1s not evident whether
kleptic nomenclature will be accepted by the international scientific community. Some
European authors routinely use this system of nomenclature for the Rana kl. esculenta
complex. The ad: d state of knowledge in Poeciliopsis, Phoxmus and Poeciha
complexes seems to be adequate for the full use of kleptic nomenclature, although names
are needed for taxa as yet unnamed.

The 1985 Code authorizes nterpolation  as the proposal for interpolation of *“ kl.
in scientific names — although to be sure in a different context, viz. species-groups and
subspecies-groups. The principle is the same, however, if the insertion of “kl.” is
proposed (see the Code, Art. b, p. 10, H. M. SmiTH, in litteris).

Canadian zoologists working on the Ambystoma complex seem to be in mutual
accord for the use of hyphenated names. Since knowledge of some d by.
taxa is still inadequate (for instance we do not know if parlhenogenesls occurs cvcn after
recent papers published by BoGarT and coll ), it seems ly proper to
continue to use provisional terms

It was LiNNAEUS who first used binomial names for species. But that concept was
erected thousands of years earlier by Grecians such as ARISTOTELES. And the BSC needed
around two centuries from LINNAEUS to MAYR 1n order to become formally constituted.
The klepton sytematic-evolutionary category was proposed only 1 1982 by Dusois &
GUNTHER, from which the BKC 15 available; its fate may require decades to be finalized.
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